Other Underdogs

Mysid Shrimp, Grass Shrimp,

Ribbed Mussels, and Marsh Minnows

Gina Muhs Saizan
Damage Assessment Program Manager, LOSCO
Gina.Saizan@la.gov

Matthew Moerschbaecher
Environmental Scientist, LOSCO
Matthew.Moerschbaecher@la.gov
Bioindicators

- Any species or groups of species whose function, population, or status can reveal the qualitative status of the environment

- Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present
Bioindicator Attributes

- Wide distribution range
- Well known biology
- Immobility
- Ability to provide an early alert
- Key function in the ecosystem
- Homogeneous response to pollutants
- Existence of identifiable toxic effects with the degree of pollution

(Hilty and Merenlender, 2000; Goodsell et al., 2009). (Li et al. 2019)
Sentinel species

- Reliable sentinel species
 - Must be common
 - Easily handled
 - Consistent/regularly measurable responses to environmental changes
- Examples:
 - Canary – Coalmine
 - Trout – Great Lakes
Underdogs of Louisiana’s Bays & Estuaries

- Mysid Shrimp
- Grass Shrimp
- Mussels
- Marsh Minnows
Mysid Shrimp

Americamysis bahia (formerly *Mysidopsis bahia*)
Mysid Shrimp

- Small crustaceans (5–25 mm long)
- Abundant in shallow (<2 m) salt, brackish, and freshwater habitats (58 genera)
- Omnivore filter feeders (algae, detritus and zooplankton)
- Food source for many marine organisms
- Easily cultured and sensitive
- Used in toxicity test as bioindicators for water quality
Mysids and Toxicity Testing

- Used by EPA for more than two decades (Nimmo and Hamaker, 1982; Verslycke et al., 2004a)
- Determines toxicity by measuring endpoints (survival, growth, and fecundity)
- Dose-response information
- Expressed as the percent concentration that is lethal to 50% of the test organisms (LC50) within prescribed period of time (24-96 h) or the highest effluent concentration in which survival is not statistically significantly different from the control
Oil Effects on Mysids

- Cleveland et al. 2000
 - 7-day bioassay test with weathered crude oil
 - Exposed to Ultraviolet (UV) light treatments
 - Significant increase in mortality with UV exposure
 - Weathered oil and UV exposure will substantially increase the toxicity and reduce productivity (biomass)
Effects of Weathering on the Toxicity of Oil to Early Life-Stage Fish and Invertebrates (DWH-AR0280207)

- Certain PAHs are phototoxic
- These PAHs can cause severe tissue damage & mortality in semi-transparent organisms
- Short-exposure durations (e.g., hours; Willis and Oris, 2014) and are subsequently exposed to ultraviolet (UV) light.
- Weathered oil can cause photo-induced mortality of organisms at low concentrations (e.g., < 0.5 gg/L TPAH50; DWH Trustees, 2015, Section 4.3, Toxicity; Lay et al., 2015; Morris et al., 2015).
Grass Shrimp

Palaemonetes pugio
Grass Shrimp

- Small crustacean (~5 cm)
- ~1 year life span
- Abundant in fresh and brackish shallow water marshes
- Detritivores - can be primary or secondary consumers
- Aid in the breakdown of organic material as well as assimilate the associated microflaura, microfauna, and fungi.
- Attracted to plant stems and oyster reefs
Grass Shrimp

- Key link in food chain
- Support fishery stocks through the food chain (Rozas and Reed 1993)
- Instrumental in transporting energy
Oil Effects on Grass Shrimp

- Hydrocarbon concentrations could cause acute toxicity in sediments and water chronically exposed to oil or exposed during large oil spills.
- Metabolism, reproduction, and growth may be reduced or altered if oil concentrations persist near 1ppm.
- Tatem, H.E., 1975 - Exposure to PAHs may cause:
 - Altered respiratory rates, growth rates and behavior
 - Napthalene has narcotic effect
 - Detrimental effects to hatching larvae
 - Chronic exposure more harmful than acute high exposure
Ribbed Mussels

Geukensia granosissima
Ribbed Mussels

- Intertidal, filter feeding, benthic bivalve (~8 cm)
- Abundant along salt & brackish marsh vegetation
- Attach to the base of plant stem with byssal threads
- Mutualistic relationship with marsh grass
- Deposit fecal matter on the surrounding sediment which stimulates the grass to grow by increasing the soil nitrogen
- Increase marsh net primary production and stability
- Few studies in Mississippi River deltaic marshes
- NOAA’s Mussel Watch Program in Atlantic region
- 2000 individuals/m² in New England salt marshes (Chintala et al. 2006).
Ribbed Mussels

- Significant in affecting the physical structure of the marsh (Bertness, 1985)
- Jordan and Valiela 1982, Culbertson et al. 2008 (Atlantic species)
 - Provide important ecosystem services
 - Critical nutrient cycling
 - Estuarine filtration
 - Fertilization of host vegetation
 - soil strengthening
- Changes that impact bivalve populations and distribution may lead to trophic cascades with large ecosystem consequences (Jordan and Valiela 1982, Bertness 1984)
Oil Effects on Ribbed Mussels

- Readily bioaccumulate pollutants in their tissues
- Potentially more sensitive to pollutants than oysters (Coen and Walters 2005)
- Through filtering large quantities of water, mussels are exposed to lipophilic PAHs, which are known to bioconcentrate by 2-5 orders of magnitude within mussel tissue (Neff 2002).
- This exposure to hydrocarbons can decrease population (Peteiro et al., 2006)
- Decrease growth rates (Stromgren et al., 1986; LeFloch et al., 2003)
- Lower feeding rates (Widdows et al., 1981; Widdows et al., 1987; Widdows et al., 1996) (Culbertson et al. 2008)
Marsh Minnows

Cyprinodon variegatus – Sheepshad minnow
Marsh Minnows
Fundulus grandis - Gulf killifish

Male

Female
Small abundant minnows (~4.6 cm -18cm)
- Live in fresh, brackish, and salt marshes
- Attracted to marsh plant stems, oyster beds, pilings and seagrasses
- Omnivores (organic detritus, algae, and small crustaceans)
- Tough/hardy - low oxygen, wide salinity ranges
- Spawn spring to fall months (Nordlie 2006; Brown et al. 2012, 2011).
- Eggs stick to plants stems, bay bottom, oyster shells, and each other
Marsh Minnows

- Important prey for fish, birds, and mammals
- High site fidelity with small-scale movements (Vastano et al. 2017)
- Popular live bait
- *Fundulus heteroclitus* long term toxicology model for genetic and genomic response to pollutants at Superfund sites across the northeastern US.
- Could become the marine science equivalent of the white mouse used in medical science. – Dr. Stephen “Ash” Bullard, Auburn University Gulf of Mexico Research Initiative
Effects of Oil on Marsh Minnows

- Dubansky et al. 2013
 - PAHs elicited genomic and physiological effects in Gulf killifish
 - Expression of molecular biomarkers (cytochrome p450 [cyp] transcripts)
 - Changes in gill histology and (Whitehead et al. 2012)
 - Embryonic exposure to oiled sediments had negative impacts on health (reduced hatching, increased mortality, and developmental abnormalities)
 - Cardiovascular defects, delayed hatching, and reduced hatching success
 - Potential long-term effects at the population level for marsh minnows and other biota that live or spawn in similar habitats.
 - Weathered crude imparts significant biological impacts in marshes for more than 2 months following initial exposures

- Hedgpeth B.M. and Griffitt R.J. 2015
 - Exposure to oil or dispersed oil and hypoxia - significant decrease in egg production, egg hatch, and larval survival in sheepshead minnow
Mysid References

- Cleveland L. Little E.E., Calfee R.D., and Barron M.G. Photoenhanced Toxicity of Weathered Oil to *Mysidopsis bahia*. Aquatic Toxicology Vol. 49 Issues 1-2 May 2000, Pages 63-76
- Fuller C., Bonner J., Page C., Ernest A. McDonald T., and McDonald S. Comparative toxicity of oil, dispersant, and oil plus dispersant to several marine species. Environmental Toxicology and Chemistry 2004. Vol. 23 No.12, pp. 2941-2949
- Hemmer M.J., Barron M.G., and Greene R.M. Comparative Toxicity of Eight Oil Dispersants, Louisiana Sweet Crude Oil (LSC), and Chemically Dispersed LSC to Two Aquatic Test Species. Environmental Toxicology and Chemistry 2011 Vol. 30 No.10 pp. 2244-2252
Grass Shrimp References

Mussel References

Mussel References

- Hudson D.S. Zonation pattern and spatial arrangement of a Geukensia granossissima population in a mixed mangrove forest of Tampa Bay .Graduate Thesis. University of South Florida. 3/22/2017
- Li, J. et al. 2019. Using mussel as a global bioindicator of coastal microplastic pollution, Environmental Pollution, Volume 244, Pages 522-533
Mussel References

Marsh Minnow References

Green C (2013) Intensive (non-pond) culture of Gulf killifish (1202). Louisiana State University Agricultural Center: Southern Regional Aquaculture Center

Conclusion

- Underdogs or Heroes?
- Similar species in other areas are well documented
- Species well documented for other pollutants
- Louisiana specific research
 - Marshes and species
 - Oil, temperature, salinity, and other environmental factors
 - Spills of opportunity
Thank you

Louisiana Oil Spill Coordinator’s Office
7979 Independence Blvd., Suite 104
Baton Rouge, LA
225-925-6606